t SNE
Sure! Here's a Python script that demonstrates the t-SNE algorithm using the famous Iris dataset for visualization:
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.manifold import TSNE
# Load the Iris dataset
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Applying t-SNE
tsne = TSNE(n_components=2, random_state=42)
X_tsne = tsne.fit_transform(X)
# Plotting the t-SNE results
colors = ['r', 'g', 'b']
target_names = iris.target_names
plt.figure(figsize=(10, 6))
for i, target_name in enumerate(target_names):
plt.scatter(X_tsne[y == i, 0], X_tsne[y == i, 1], c=colors[i], label=target_name)
plt.xlabel('First t-SNE Component')
plt.ylabel('Second t-SNE Component')
plt.title('t-SNE Visualization of Iris Dataset')
plt.legend()
plt.show()
In this script, we first import the necessary libraries (numpy
, matplotlib
, sklearn.datasets
, and sklearn.manifold.TSNE
) to perform the t-SNE algorithm. Then, we load the Iris dataset using the datasets.load_iris()
from scikit-learn. The data and target variables are assigned to X
and y
arrays, respectively.
After that, we create an instance of the t-SNE algorithm with TSNE(n_components=2, random_state=42)
. We choose 2 components (n_components=2
) since we want to visualize the data in 2D. The random_state
parameter is set to ensure reproducibility in the results. We then apply the t-SNE algorithm to the data using fit_transform(X)
, which returns the transformed data as X_tsne
.
Finally, we plot the t-SNE results using matplotlib
. Each data point is plotted in a scatter plot, with different colors representing different classes ('setosa', 'versicolor', and 'virginica') in the Iris dataset.
To run this script, ensure that you have the necessary libraries installed (numpy
, matplotlib
, and scikit-learn
). Save it as a .py file and execute it using a Python interpreter. The script will show a plot with the t-SNE visualization of the Iris dataset.